3.1.48 \(\int \frac {d+e x^4}{x (a+b x^4+c x^8)} \, dx\) [48]

Optimal. Leaf size=78 \[ \frac {(b d-2 a e) \tanh ^{-1}\left (\frac {b+2 c x^4}{\sqrt {b^2-4 a c}}\right )}{4 a \sqrt {b^2-4 a c}}+\frac {d \log (x)}{a}-\frac {d \log \left (a+b x^4+c x^8\right )}{8 a} \]

[Out]

d*ln(x)/a-1/8*d*ln(c*x^8+b*x^4+a)/a+1/4*(-2*a*e+b*d)*arctanh((2*c*x^4+b)/(-4*a*c+b^2)^(1/2))/a/(-4*a*c+b^2)^(1
/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {1488, 814, 648, 632, 212, 642} \begin {gather*} \frac {(b d-2 a e) \tanh ^{-1}\left (\frac {b+2 c x^4}{\sqrt {b^2-4 a c}}\right )}{4 a \sqrt {b^2-4 a c}}-\frac {d \log \left (a+b x^4+c x^8\right )}{8 a}+\frac {d \log (x)}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x^4)/(x*(a + b*x^4 + c*x^8)),x]

[Out]

((b*d - 2*a*e)*ArcTanh[(b + 2*c*x^4)/Sqrt[b^2 - 4*a*c]])/(4*a*Sqrt[b^2 - 4*a*c]) + (d*Log[x])/a - (d*Log[a + b
*x^4 + c*x^8])/(8*a)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 814

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[(d + e*x)^m*((f + g*x)/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rule 1488

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
 Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a,
 b, c, d, e, m, n, p, q}, x] && EqQ[n2, 2*n] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {d+e x^4}{x \left (a+b x^4+c x^8\right )} \, dx &=\frac {1}{4} \text {Subst}\left (\int \frac {d+e x}{x \left (a+b x+c x^2\right )} \, dx,x,x^4\right )\\ &=\frac {1}{4} \text {Subst}\left (\int \left (\frac {d}{a x}+\frac {-b d+a e-c d x}{a \left (a+b x+c x^2\right )}\right ) \, dx,x,x^4\right )\\ &=\frac {d \log (x)}{a}+\frac {\text {Subst}\left (\int \frac {-b d+a e-c d x}{a+b x+c x^2} \, dx,x,x^4\right )}{4 a}\\ &=\frac {d \log (x)}{a}-\frac {d \text {Subst}\left (\int \frac {b+2 c x}{a+b x+c x^2} \, dx,x,x^4\right )}{8 a}+\frac {(-b d+2 a e) \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^4\right )}{8 a}\\ &=\frac {d \log (x)}{a}-\frac {d \log \left (a+b x^4+c x^8\right )}{8 a}-\frac {(-b d+2 a e) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^4\right )}{4 a}\\ &=\frac {(b d-2 a e) \tanh ^{-1}\left (\frac {b+2 c x^4}{\sqrt {b^2-4 a c}}\right )}{4 a \sqrt {b^2-4 a c}}+\frac {d \log (x)}{a}-\frac {d \log \left (a+b x^4+c x^8\right )}{8 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.02, size = 80, normalized size = 1.03 \begin {gather*} \frac {d \log (x)}{a}-\frac {\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {b d \log (x-\text {$\#$1})-a e \log (x-\text {$\#$1})+c d \log (x-\text {$\#$1}) \text {$\#$1}^4}{b+2 c \text {$\#$1}^4}\&\right ]}{4 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^4)/(x*(a + b*x^4 + c*x^8)),x]

[Out]

(d*Log[x])/a - RootSum[a + b*#1^4 + c*#1^8 & , (b*d*Log[x - #1] - a*e*Log[x - #1] + c*d*Log[x - #1]*#1^4)/(b +
 2*c*#1^4) & ]/(4*a)

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 74, normalized size = 0.95

method result size
default \(\frac {-\frac {d \ln \left (c \,x^{8}+b \,x^{4}+a \right )}{4}+\frac {\left (a e -\frac {b d}{2}\right ) \arctan \left (\frac {2 c \,x^{4}+b}{\sqrt {4 a c -b^{2}}}\right )}{\sqrt {4 a c -b^{2}}}}{2 a}+\frac {d \ln \left (x \right )}{a}\) \(74\)
risch \(\frac {d \ln \left (x \right )}{a}+\frac {\left (\munderset {\textit {\_R} =\RootOf \left (\left (4 a^{2} c -a \,b^{2}\right ) \textit {\_Z}^{2}+\left (4 a c d -b^{2} d \right ) \textit {\_Z} +a \,e^{2}-d e b +c \,d^{2}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (18 a c -5 b^{2}\right ) \textit {\_R}^{2}+\left (-e b +9 c d \right ) \textit {\_R} +4 e^{2}\right ) x^{4}-b \,\textit {\_R}^{2} a +\left (-a e +4 b d \right ) \textit {\_R} +4 d e \right )\right )}{4}\) \(123\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^4+d)/x/(c*x^8+b*x^4+a),x,method=_RETURNVERBOSE)

[Out]

1/2/a*(-1/4*d*ln(c*x^8+b*x^4+a)+(a*e-1/2*b*d)/(4*a*c-b^2)^(1/2)*arctan((2*c*x^4+b)/(4*a*c-b^2)^(1/2)))+d*ln(x)
/a

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/x/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

________________________________________________________________________________________

Fricas [A]
time = 0.80, size = 242, normalized size = 3.10 \begin {gather*} \left [-\frac {{\left (b^{2} - 4 \, a c\right )} d \log \left (c x^{8} + b x^{4} + a\right ) - 8 \, {\left (b^{2} - 4 \, a c\right )} d \log \left (x\right ) + \sqrt {b^{2} - 4 \, a c} {\left (b d - 2 \, a e\right )} \log \left (\frac {2 \, c^{2} x^{8} + 2 \, b c x^{4} + b^{2} - 2 \, a c - {\left (2 \, c x^{4} + b\right )} \sqrt {b^{2} - 4 \, a c}}{c x^{8} + b x^{4} + a}\right )}{8 \, {\left (a b^{2} - 4 \, a^{2} c\right )}}, -\frac {{\left (b^{2} - 4 \, a c\right )} d \log \left (c x^{8} + b x^{4} + a\right ) - 8 \, {\left (b^{2} - 4 \, a c\right )} d \log \left (x\right ) - 2 \, \sqrt {-b^{2} + 4 \, a c} {\left (b d - 2 \, a e\right )} \arctan \left (-\frac {{\left (2 \, c x^{4} + b\right )} \sqrt {-b^{2} + 4 \, a c}}{b^{2} - 4 \, a c}\right )}{8 \, {\left (a b^{2} - 4 \, a^{2} c\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/x/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

[-1/8*((b^2 - 4*a*c)*d*log(c*x^8 + b*x^4 + a) - 8*(b^2 - 4*a*c)*d*log(x) + sqrt(b^2 - 4*a*c)*(b*d - 2*a*e)*log
((2*c^2*x^8 + 2*b*c*x^4 + b^2 - 2*a*c - (2*c*x^4 + b)*sqrt(b^2 - 4*a*c))/(c*x^8 + b*x^4 + a)))/(a*b^2 - 4*a^2*
c), -1/8*((b^2 - 4*a*c)*d*log(c*x^8 + b*x^4 + a) - 8*(b^2 - 4*a*c)*d*log(x) - 2*sqrt(-b^2 + 4*a*c)*(b*d - 2*a*
e)*arctan(-(2*c*x^4 + b)*sqrt(-b^2 + 4*a*c)/(b^2 - 4*a*c)))/(a*b^2 - 4*a^2*c)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**4+d)/x/(c*x**8+b*x**4+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 6.55, size = 78, normalized size = 1.00 \begin {gather*} -\frac {d \log \left (c x^{8} + b x^{4} + a\right )}{8 \, a} + \frac {d \log \left (x^{4}\right )}{4 \, a} - \frac {{\left (b d - 2 \, a e\right )} \arctan \left (\frac {2 \, c x^{4} + b}{\sqrt {-b^{2} + 4 \, a c}}\right )}{4 \, \sqrt {-b^{2} + 4 \, a c} a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/x/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

-1/8*d*log(c*x^8 + b*x^4 + a)/a + 1/4*d*log(x^4)/a - 1/4*(b*d - 2*a*e)*arctan((2*c*x^4 + b)/sqrt(-b^2 + 4*a*c)
)/(sqrt(-b^2 + 4*a*c)*a)

________________________________________________________________________________________

Mupad [B]
time = 5.27, size = 2500, normalized size = 32.05 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^4)/(x*(a + b*x^4 + c*x^8)),x)

[Out]

(d*log(x))/a - (log(a + b*x^4 + c*x^8)*(4*b^2*d - 16*a*c*d))/(2*(16*a*b^2 - 64*a^2*c)) + (atan((128*a^5*x^4*((
(c^4*e^5 - ((4*b^2*d - 16*a*c*d)*(11*b*c^4*e^4 + 9*c^5*d*e^3 - ((4*b^2*d - 16*a*c*d)*(((4*b^2*d - 16*a*c*d)*((
(4*b^2*d - 16*a*c*d)*(((4*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5))/(2*(16*a*b^2 - 64*a^2*c)) + 576*b
^3*c^5*d - 1024*b^4*c^4*e + 3456*a*b^2*c^5*e))/(2*(16*a*b^2 - 64*a^2*c)) + 224*b^3*c^4*e^2 - 864*a*b*c^5*e^2 -
 432*b^2*c^5*d*e))/(2*(16*a*b^2 - 64*a^2*c)) + 72*a*c^5*e^3 + 16*b^2*c^4*e^3 + 108*b*c^5*d*e^2))/(2*(16*a*b^2
- 64*a^2*c))))/(2*(16*a*b^2 - 64*a^2*c)) - ((4*b^2*d - 16*a*c*d)*(((4*b^2*d - 16*a*c*d)*(((((2*a*e - b*d)*(((4
*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5))/(2*(16*a*b^2 - 64*a^2*c)) + 576*b^3*c^5*d - 1024*b^4*c^4*e
 + 3456*a*b^2*c^5*e))/(8*a*(4*a*c - b^2)^(1/2)) + ((4*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5)*(2*a*e
 - b*d))/(16*a*(16*a*b^2 - 64*a^2*c)*(4*a*c - b^2)^(1/2)))*(2*a*e - b*d))/(8*a*(4*a*c - b^2)^(1/2)) + ((4*b^2*
d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5)*(2*a*e - b*d)^2)/(128*a^2*(16*a*b^2 - 64*a^2*c)*(4*a*c - b^2))))
/(2*(16*a*b^2 - 64*a^2*c)) + ((2*a*e - b*d)*(((((2*a*e - b*d)*(((4*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^
3*c^5))/(2*(16*a*b^2 - 64*a^2*c)) + 576*b^3*c^5*d - 1024*b^4*c^4*e + 3456*a*b^2*c^5*e))/(8*a*(4*a*c - b^2)^(1/
2)) + ((4*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5)*(2*a*e - b*d))/(16*a*(16*a*b^2 - 64*a^2*c)*(4*a*c
- b^2)^(1/2)))*(4*b^2*d - 16*a*c*d))/(2*(16*a*b^2 - 64*a^2*c)) + ((2*a*e - b*d)*(((4*b^2*d - 16*a*c*d)*(((4*b^
2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5))/(2*(16*a*b^2 - 64*a^2*c)) + 576*b^3*c^5*d - 1024*b^4*c^4*e +
3456*a*b^2*c^5*e))/(2*(16*a*b^2 - 64*a^2*c)) + 224*b^3*c^4*e^2 - 864*a*b*c^5*e^2 - 432*b^2*c^5*d*e))/(8*a*(4*a
*c - b^2)^(1/2))))/(8*a*(4*a*c - b^2)^(1/2))))/(2*(16*a*b^2 - 64*a^2*c)) + ((((((((2*a*e - b*d)*(((4*b^2*d - 1
6*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5))/(2*(16*a*b^2 - 64*a^2*c)) + 576*b^3*c^5*d - 1024*b^4*c^4*e + 3456*a*
b^2*c^5*e))/(8*a*(4*a*c - b^2)^(1/2)) + ((4*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5)*(2*a*e - b*d))/(
16*a*(16*a*b^2 - 64*a^2*c)*(4*a*c - b^2)^(1/2)))*(2*a*e - b*d))/(8*a*(4*a*c - b^2)^(1/2)) + ((4*b^2*d - 16*a*c
*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5)*(2*a*e - b*d)^2)/(128*a^2*(16*a*b^2 - 64*a^2*c)*(4*a*c - b^2)))*(2*a*e - b
*d))/(8*a*(4*a*c - b^2)^(1/2)) + ((4*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5)*(2*a*e - b*d)^3)/(1024*
a^3*(16*a*b^2 - 64*a^2*c)*(4*a*c - b^2)^(3/2)))*(2*a*e - b*d))/(8*a*(4*a*c - b^2)^(1/2)) - ((((4*b^2*d - 16*a*
c*d)*(((((2*a*e - b*d)*(((4*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5))/(2*(16*a*b^2 - 64*a^2*c)) + 576
*b^3*c^5*d - 1024*b^4*c^4*e + 3456*a*b^2*c^5*e))/(8*a*(4*a*c - b^2)^(1/2)) + ((4*b^2*d - 16*a*c*d)*(1280*b^5*c
^4 - 4608*a*b^3*c^5)*(2*a*e - b*d))/(16*a*(16*a*b^2 - 64*a^2*c)*(4*a*c - b^2)^(1/2)))*(4*b^2*d - 16*a*c*d))/(2
*(16*a*b^2 - 64*a^2*c)) + ((2*a*e - b*d)*(((4*b^2*d - 16*a*c*d)*(((4*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*
b^3*c^5))/(2*(16*a*b^2 - 64*a^2*c)) + 576*b^3*c^5*d - 1024*b^4*c^4*e + 3456*a*b^2*c^5*e))/(2*(16*a*b^2 - 64*a^
2*c)) + 224*b^3*c^4*e^2 - 864*a*b*c^5*e^2 - 432*b^2*c^5*d*e))/(8*a*(4*a*c - b^2)^(1/2))))/(2*(16*a*b^2 - 64*a^
2*c)) + ((2*a*e - b*d)*(((4*b^2*d - 16*a*c*d)*(((4*b^2*d - 16*a*c*d)*(((4*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 46
08*a*b^3*c^5))/(2*(16*a*b^2 - 64*a^2*c)) + 576*b^3*c^5*d - 1024*b^4*c^4*e + 3456*a*b^2*c^5*e))/(2*(16*a*b^2 -
64*a^2*c)) + 224*b^3*c^4*e^2 - 864*a*b*c^5*e^2 - 432*b^2*c^5*d*e))/(2*(16*a*b^2 - 64*a^2*c)) + 72*a*c^5*e^3 +
16*b^2*c^4*e^3 + 108*b*c^5*d*e^2))/(8*a*(4*a*c - b^2)^(1/2)))*(2*a*e - b*d))/(8*a*(4*a*c - b^2)^(1/2)) + ((4*b
^2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5)*(2*a*e - b*d)^4)/(8192*a^4*(16*a*b^2 - 64*a^2*c)*(4*a*c - b^2
)^2))*(5*b^5*d - a^3*c^2*e - a*b^4*e - 24*a*b^3*c*d + 23*a^2*b*c^2*d + 3*a^2*b^2*c*e))/(32*a^5*c^4*(a^2*e^2 -
20*b^2*d^2 + 81*a*c*d^2 - a*b*d*e)) - ((((4*b^2*d - 16*a*c*d)*(((((((2*a*e - b*d)*(((4*b^2*d - 16*a*c*d)*(1280
*b^5*c^4 - 4608*a*b^3*c^5))/(2*(16*a*b^2 - 64*a^2*c)) + 576*b^3*c^5*d - 1024*b^4*c^4*e + 3456*a*b^2*c^5*e))/(8
*a*(4*a*c - b^2)^(1/2)) + ((4*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5)*(2*a*e - b*d))/(16*a*(16*a*b^2
 - 64*a^2*c)*(4*a*c - b^2)^(1/2)))*(2*a*e - b*d))/(8*a*(4*a*c - b^2)^(1/2)) + ((4*b^2*d - 16*a*c*d)*(1280*b^5*
c^4 - 4608*a*b^3*c^5)*(2*a*e - b*d)^2)/(128*a^2*(16*a*b^2 - 64*a^2*c)*(4*a*c - b^2)))*(2*a*e - b*d))/(8*a*(4*a
*c - b^2)^(1/2)) + ((4*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5)*(2*a*e - b*d)^3)/(1024*a^3*(16*a*b^2
- 64*a^2*c)*(4*a*c - b^2)^(3/2))))/(2*(16*a*b^2 - 64*a^2*c)) - ((4*b^2*d - 16*a*c*d)*(((4*b^2*d - 16*a*c*d)*((
(((2*a*e - b*d)*(((4*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 4608*a*b^3*c^5))/(2*(16*a*b^2 - 64*a^2*c)) + 576*b^3*c^
5*d - 1024*b^4*c^4*e + 3456*a*b^2*c^5*e))/(8*a*(4*a*c - b^2)^(1/2)) + ((4*b^2*d - 16*a*c*d)*(1280*b^5*c^4 - 46
08*a*b^3*c^5)*(2*a*e - b*d))/(16*a*(16*a*b^2 - 64*a^2*c)*(4*a*c - b^2)^(1/2)))*(4*b^2*d - 16*a*c*d))/(2*(16*a*
b^2 - 64*a^2*c)) + ((2*a*e - b*d)*(((4*b^2*d - ...

________________________________________________________________________________________